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Abstract

Optimisation problems, such as finding solutions to the boolean satisfiability
problem (k-SAT), or finding valid itineraries in the travelling salesman problem
are a very well known and studied class of problems with existing algorithmic
solutions. In this report, we look at a different approach to computational opti-
misation by using dynamical systems with attractors corresponding to solutions
of the optimisation problem - such a representation does not produce solutions
faster, but it gives us insight into how combinatorial optimisation can be feasibly
done in a neural medium such as the brain. The report concentrates on solving
a popular NP-complete problem, boolean k-SAT, by using dynamical systems.
We study two previously developed methods, and contribute another alterna-
tive system that has the benefit of using bounded variables, and of solving some
problems that a different bounded system was not able to solve. We evalu-
ate dynamical system SAT solving by developing a SAT encoding for the logic
game Bridges and by solving the encodings for different difficulties of Bridges.
We come to an interesting conclusion regarding escape rates of the dynami-
cal systems and the published difficulty of the game - while “Easy” problems
are indeed easier to solve by the dynamical system approach, a “Hard” puzzle
is easier to solve than a “Normal” puzzle due to increased constraint density
for “Hard” puzzles. In this way, we show that a higher difficulty optimisation
problem for humans can actually be easier than a corresponding easier problem
when encoded as SAT.
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Chapter 1

Introduction

Optimisation problems, such as finding solutions to the boolean satisfiability
problem (k-SAT), or finding valid itineraries in the travelling salesman problem
are a very well known and studied class of problems with existing algorithmic
solutions.

In this project, we look at a different approach to computational optimisation
by using dynamical systems with attractors corresponding to solutions of the
optimisation problem. The motivation behind the research is that while an
algorithmic procedure, such as resolution for SAT solving, is perfect for a com-
puter, it is infeasible for it to appear in a system such as the brain that uses
neural computation and actually is itself a dynamical system. Moreover, ex-
pressing combinatorial optimisation problems as analog dynamical systems in a
way parallelizes the search procedure, and makes it possible to construct analog
circuits, such as CTRNN’s (Continuous Time Recurrent Neural Network) that
are specifically suited to solving a specific optimisation problem.

In this project we first study the relevant background on neural computation,
present the Hopfield Network model and go over boolean satisfiability and meth-
ods of solving k-SAT problems (chapter 2). To introduce the idea of optimisa-
tion via dynamical systems, we look at how to represent popular optimisation
problems such as N-Rooks, N-Queens, and the Travelling Salesman Problem as
dynamical systems with attractors corresponding to solutions, and show how
a Hopfield network can be trained to recognise binary images of letters even if
the presented image does correspond exactly to the training image (chapter 3).

The main focus of the project is solving Boolean satisfiability (k-SAT) using
dynamical systems. We present and evaluate two methods from existing recent
literature, and contribute a third method which exhibits different properties to
the other two methods (chapter 4).

To evaluate the dynamical systems used for SAT solving, we encode the puzzle
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4 CHAPTER 1. INTRODUCTION

game Bridges as a SAT problem and solve the resulting formulas using the dy-
namical system formulations. We find that one of the three presented methods,
while feasible for solving random k-SAT instances, does not work at all for this
application to solving Bridges. Furthermore, we look at the escape rates of the
dynamical system while solving Bridges games as published for humans in diffi-
culties “Easy”, “Normal”, and “Hard”. We find that the escape rate for “Easy”
games is the highest, indicating the problems are indeed easy, but we also find
that games classified “Hard” for humans have a higher escape rate than those
classified as “Normal” meaning that “Hard” games are easier for the computer
to solve. We conjecture that this is because of the critical clauses-to-variables
α ratio for k-SAT solving. “Normal” games exhibit α ≈ 4.3 which indicates the
hardest types of SAT problems. “Hard” games, having more constraints, have
this ratio shifted to approximately 4.5 to 5 making the SAT problem easier to
solve by a computer. This research and evaluation is presented in chapter 5.

Overall, this area of research is interesting since it presents ways to express
combinatorial optimisation problems with huge decision spaces in ways that are
potentially solvable by a real dynamical system such as the brain.
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Chapter 2

Background

In this chapter we familiarise ourselves with the background information re-
quired to understand the concepts and contributions of this project, as well as
with what has already been done in this area of research.

The category that this project falls under is computational optimisation and
dynamical systems which includes concepts from computer science (such as SAT
solving), mathematics (optimisation via Lagrangian multipliers), and dynamical
systems [Izh07]. Furthermore, the purpose of this project is to explore how
combinatorial optimisation could be done via neural computation. For this
reason, we also look at background regarding neurons and neural computation.

2.1 Neurons and the Hopfield model

The Hopfield network, an artificial neural network capable of solving certain
optimisation problems, is partially based on real neurons, and for this reason
we present here a short introduction to neurons in the human brain, and their
simplified realisation in the Hopfield model. Ultimately, converting optimisation
problems to dynamical systems is interesting as it allows for the computation
to be performed on something with a neural substrate, such as a brain.

2.1.1 Neurons

The basic building block that gives our brains computational capabilities is the
neuron. It is a nerve cell present in the CNS (Central Nervous System), most
importantly in the brain and the spinal cord. In the brain, there are around
1011 neurons interconnected together.
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6 CHAPTER 2. BACKGROUND

Figure 2.1 – Biological neuron. Adapted from [neu]

Figure 2.1 shows us a standard neuron. The most important parts are the
dendrites, cell body, axon, and the axon terminals.

A typical neuron is connected to approximately 10, 000 other neurons via its
connections at the dendritic tree, at what we call synapses (See Figure 2.2). In
an abstract way, we can think of the whole setup as a directed graphG = (N,E),
where N is the set of all neurons, and E ⊆ N ×N are the connections between
individual neurons.

Figure 2.2 – Two interconnected neurons and a figure showing a spike in mem-
brane potential. Adapted from [Izh07]

Spiking

The inputs to a neuron carry electrical current that changes the membrane
potential of the neuron. Small currents produce small changes in the membrane
potential, while larger currents have the capacity to produce an action potential,
also called a spike. When a spike is emitted at one neuron, the change in voltage
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7 CHAPTER 2. BACKGROUND

propagates to other connected neurons via the axon and axon terminals which
connect to other neurons at their dendrites. Figure 2.2 shows the setup, as well
as a chart of a membrane potential over time.

Normally, a neuron’s membrane potential is at the resting state. When the input
current increases, so does the membrane potential of the neuron, until it passes
a certain threshold, and then the neuron quickly depolarises, sending the change
in voltage along its axon. The neuron then begins rapidly repolarazing, reaching
a membrane potential below its resting potential, and then hyperpolarizing back
to its resting potential. After a spike, a neuron can’t spike again instantly since it
is repolarizing. This period is called the refractory period of the neuron. Spiking
is the way in which neurons communicate with each other [Izh07]. A neuron
fires as a result of the firing of neurons connected to its dendrites. Additionally,
a neuron spontaneously fires by itself at a rate of around 1Hz, which should be
taken into account if one is creating realistic models. By connecting different
types of neurons together, we can make different types of computational objects,
such as an integrator to sum together inputs, or a thresholding unit to threshold
the result of a neuron.

A very recent state of the art tool for neural modelling and simulation is Nengo,
presented in [ESC+12]. Nengo allows you to create ensembles of neurons and
simulate many different mathematical functions. It is for this reason that we
present the background on real neurons; they are able to represent many math-
ematical functions and artificial neural networks are based precisely on real
neurons.

Artificial Neuron

The most simplified version of a neuron is a threshold neuron that fires if the
sum of its inputs is greater than a certain threshold. This is the model widely
used in artificial intelligence in neural networks. The reason is that networks
made up of such neurons are much easier to analyse mathematically. Figure 2.3
shows a simple artificial neuron. The neuron fires if

∑n
i=1wixi > T , where T is a

threshold value. This model is insufficient for computational neuroscience since
it has no biological plausibility - most importantly it does not exhibit spiking
behaviour. Nevertheless, because of its simplicity and ease of analysis, this is
the type of neuron used in the Hopfield model, first introduced in [HT85].

2.1.2 Long term memory as an optimisation problem

Donald Hebb was interested in how to the brain is able to form short and long
term memories, and he originally presented the idea for a basic mechanism for
synaptic plasticity, which can be summarised as “Neurons that fire together,
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8 CHAPTER 2. BACKGROUND

Figure 2.3 – Non-spiking threshold neuron

wire together, neurons that fire out of sync, fail to link”.

Hebbian theory has been validated as the likely mechanism underlying long-term
memory. Thus, human memory works in an associative, content-addressable
way. For example, if you trigger thoughts about dark clouds, due to associativity
of our memories, the thoughts of rain will arise. Also, humans are able to recall
a memory with more detail, by simply thinking of smaller parts of the memory
and its features.

There are many models that use Hebbian learning rules, the most simple one
being the Hopfield network, which works like an associative memory. Assume
you have a certain pattern P = {p0, p1 . . . , pN} ∈ {−1, 1}N that you want
to store and retrieve later on. After training the network, we can present a
stimulus, and the network will converge to one of its fixed point attractors and
return the associated result. This represents an optimisation problem - given
a Hopfield network and a pattern A, we are interested in the Hopfield network
converging to a pattern B such that B is one of the training patterns, and
the d(A,B) is minimised, where d is some appropriate metric, for example the
Euclidean distance.

2.1.3 Hopfield Networks

A Hopfield network is a single-layered, recurrent, neural network with symmetric
all-to-all connections, and in which each neuron has an output value of 1 or −1.
Additionally, self-connections are not allowed, wii = 0. On each iteration of
the Hopfield network update rule, each neuron will either stay in its current
state, or flip to the other state. The state of all neurons represents the state
of the Hopfield network. The purpose of the Hopfield network is to simulate
long-term memory, which works in an associative way. After an initial training
period during which the network learns to recognise patterns, we present a
pattern to the network and it returns the closest guess from the patterns that
it has stored. A Hopfield network is an example of an unsupervised learning
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9 CHAPTER 2. BACKGROUND

algorithm1.

Formally, we define a Hopfield network as a set of N neurons with each neuron x
having a value xi, xi ∈ {−1, 1}, and connectivity matrix w, such that ∀i,jwij =
wji and ∀iwii = 0. Additionally, we have the update rule for neuron x:

xi =

{
1 if hi ≥ 0
−1 if hi < 0

where

hi =
N∑
j=1

wijxj

We notice that on each time step, there are two options to update the neurons.
We can do it synchronously, updating all the nodes together, or asynchronously,
by choosing one neuron randomly to update. The asynchronous version is pre-
ferred since it is more biologically realistic [Eda].

Orbits and fixed points

The Hopfield network is a dynamical system, and as it progresses by its update
rule, it will eventually reach a fixed point and move no further. A fixed point
of a function f is a value x such that f(x) = x, that is, the function maps
the input back to itself. When that happens, the fixed point we reached is the
pattern closest to the initial pattern the network has converged to.

We imagine a Hopfield network comprising of two neurons. We have two non-
trivial choices for the connectivities. Either w12 = w21 = 1, or w12 = w21 = −1.
There are four possible states in total for the Hopfield network. Figure 2.4
shows the evolution of both of these networks according to the update rule.
Both cases converge to fixed points.

For a given Hopfield network, we define an energy function

E = −1

2

N∑
i,j=1

wijxixj

After each iteration of the update rule, the energy of the network decreases,
and eventually reaches a stable equilibrium, a local minima of E. The state of
the network at that time is the pattern that was closest to the input pattern.

1An algorithm that tries to make sense of unstructured and unlabelled data
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Figure 2.4 – Orbit plots for the two separate cases. The fixed points in Figure
2.4a are [1, 1] and [−1,−1], and in Figure 2.4b, they are [−1, 1], and [1,−1]. The
edge labels represent whether we chose to asynchronously update neuron 1 or 2.

Storing a pattern

Assume we want to store a pattern P = {x1, x2, . . . , xN} ∈ {−1, 1}N . Set
wij = µxixj where µ > 0 is a learning rate. Under this, P is a fixpoint of the
Hopfield net.

hi =
N∑
j=1

wjixi = µ
N∑
i 6=j

xix
2
j = µ

N∑
i 6=j

xi = µ(N − 1)xi

Each component of P does not change under the update rule, hence P is a
fixpoint.

Storing multiple patterns

To store p patterns ~xk, for k = 1 . . . p, in a Hopfield network of N neurons, set
wij = 1

N

∑p
k=1 x

k
i x

k
j .

In the main part of the paper, we present an application of the Hopfield network
to a very simple image recognition task.

2.2 Boolean Satisfiability

The core optimisation problem we are looking at in this project is boolean
satisfiability. As background, we introduce some definitions and claims that are
used throughout the report.

Let P be the alphabet of propositional atoms {p1, p2, . . . } and B = {∧,∨,→,¬}
be the set of logical connectives. We then inductively define a well-formed
propositional formula:

10



11 CHAPTER 2. BACKGROUND

1. Any propositional atom pi ∈ P is a propositional formula

2. > and ⊥ are propositional formulas

3. If A is a propositional formula, so is ¬A

4. If A and B are propositional formulas, then A∧B, A∨B, A→ B are all
propositional formulas.

The above presents a propositional boolean logic whose evaluation the reader
is assumed to be familiar with. Some additional required definitions follow. A,
B are propositional formulas, and p is an atom.

Atomic
A formula of the form >, ⊥, p, is called an atomic formula

Negated
A formula of the form ¬A is called a negated formula

Conjunction
A formula of the form A ∧B is called a conjunction

Disjunction
A formula of the form A ∨B is a called a disjunction

Literal
A formula that is either atomic or negated-atomic is called a literal

Disjunctive Clause (clause)
A formula that is a disjunction of one or more literals is called a disjunctive
clause or just a clause.

Conjunctive Clause
A formula that is a conjunction of one or more literals is called a conjunc-
tive clause.

Definition 1. A propositional formula A is said to be valid iff it evaluates to
true under all possible assignments of truth values. If so, we write � A. If A is
valid, we call A a tautology. For example p∨¬p and ⊥ → p are both tautologies.

Definition 2. A propositional formula A is said to be satisfiable iff there exists
an assignment of truth values P : atoms(A) 7→ {>,⊥} to the propositional
atoms in A such that A evaluates to >. Alternatively, A is satisfiable iff ¬A
is not valid, that is 2 ¬A. For example, p ∨ q is satisfiable, but p ∧ ¬p is not
satisfiable.

Definition 3. Propositional formulas A and B are said to be logically equivalent
if and only if A and B evaluate to the same truth value for all possible variable
assignments. This is equivalent to � A↔ B.

11



12 CHAPTER 2. BACKGROUND

Definition 4. An assignment P : atoms(A) 7→ {>,⊥} for a propositional
formula A is said to be a model of A iff A evaluates to > under P .

Definition 5. We say a propositional formula A is in CNF (Conjunctive Normal
Form) iff A is a conjunction of clauses, i.e. A = C1 ∨ C2 ∨ C3 ∨ · · · ∨ Cm. For
example ¬A ∧ (B ∨ ¬C) is in CNF, but ¬(A ∨B) is not.

Definition 6. We say a propositional formula A is in DNF (Disjunctive Normal
Form) iff A is a disjunction of conjunctive clauses. For example A = (¬p∧q)∨c
is in DNF.

Claim 1. Every propositional formula in DNF can be converted to a logically
equivalent propositional formula in CNF.

Proof. Let A = ((a11 ∧ a12 ∧ . . . ) ∨ (a21 ∧ a22 ∧ . . . ) ∨ · · · ∨ (an1 ∧ an2 ∧ . . . )).
We convert A to CNF by the law of distributivity. Hence

A ≡ (a11 ∨ a21 ∨ · · · ∨ an1)∧ (a11 ∨ a21 ∨ · · · ∨ an2)∧ · · · ∧ (a11 ∨ a22 ∨ · · · ∨ an1)∧
(a11 ∨ a22 ∨ · · · ∨ an2) ∧ . . .

Notice the exponential increase in the size of the CNF formula.

Claim 2. Every propositional formula A can be converted to CNF.

Proof. We show this inductively. Clearly, >, ⊥, and p, for every propositional
atom p are already trivially in CNF. Assume inductively that propositional
formulas A and B are in CNF.

¬A can be expressed as ¬((a11∨a12∨. . . )∧(a21∨a22∨. . . )∧· · ·∧(an1∨an2∨. . . ))
since A is in CNF. Distributing the negation yields ((¬a11∧¬a12∧ . . . )∨(¬a21∧
¬a22∧ . . . )∨· · ·∨(¬an1∧¬an2∧ . . . )). This formula is in DNF and be converted
to CNF by Claim 1.

To translate A∨B to CNF, we distribute each clause of A over the ∨ operator
and each clause of B, and the resulting formula is in CNF. Translating A ∧ B
to CNF is very similar to the case above.

A→ B is equivalent to ¬A ∨B and can hence be translated to CNF.

2.2.1 Satisfiability Problems

Let A be a propositional formula. The satisfiability problem (SAT problem)
is to decide whether A is satisfiable and return the satisfying assignment, or
conclude that A is not satisfiable. Most satisfiability solvers only work with
formulas in CNF.

12



13 CHAPTER 2. BACKGROUND

If we have a CNF formula such that every clause is a disjunction of at most 2
literals, we have the 2-satisfiability problem. For example, (p1∨¬p2)∧(¬p1∨p3)∧
(p3 ∨ p2) is an instance of CNF 2-satisfiability. 2-satisfiability is the simplest
satisfiability problem, with solutions in polynomial, and even in linear time
[KSS08, p.27].

If we have a CNF formula such that every clause is a disjunction of at most
k literals, we have the k-satisfiability problem, which is the most general case
of boolean satisfiability. The problem is NP-complete for k ≥ 3. Intuitively,
we can see that if A is a CNF-formula with m unique atoms, then the number
of possible boolean assignments to A is 2m. Hence, the naive satisfiability
procedure runs in time O(2m) - we iterate over every possible assignment in
{0, 1}m and check whether it is equivalent to >. In practice, currently available
algorithms are able to significantly reduce the search complexity.

Most SAT solvers request input in DIMACS CNF format, which is what we
will also use throughout this report. For a given formula, all the propositional
variables in the formula are represented by integers starting from one. If a
propositional variable occurs positively in clause, then the corresponding integer
is positive in the corresponding formula, otherwise it is negative. As an example,
the DIMACS CNF for the formula

(x1 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x1)

is

p cnf 3 2

1 -3 0

2 3 -1 0

The first line says the formula is in CNF, has 3 variables, 2 clauses, and then,
for every clause, it states whether each variable occurs positively or negatively
in that clause. Every clause is terminated by 0.

Decision Procedures for k-SAT

SAT solvers and their mechanisms are a vast topic and will not be discussed in
detail here. Modern SAT solvers can usually be classified into two classes: ones
based on the DPLL (Davis–Putnam–Logemann–Loveland) algorithm, and ones
based on stochastic search techniques.

DPLL based algorithms are complete (they find a solution if there is one).
They are backtracking based algorithms that explore the formula and decide
whether it is satisfiable or not. Such algorithms are exponential in the worst
case. [KSS08, 3.5] provides detail on the operation of such algorithms.

13
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The other family of solvers are incomplete - that is, they might not find a
satisfying assignment even if there is one. One of the techniques used in such
solvers is stochastic local search, which is incomplete due to the fact that it
might get stuck in local minima. We concentrate on this class of algorithms since
our method of solving SAT using a dynamical system more closely resembles
such incomplete algorithms that utilise local search. For a detailed discussion of
incomplete SAT algorithms, see [KSS08, 6]. We now present GSAT and WalkSAT

since the ideas behind them motivate the dynamical system approach.

Firstly, to aid understanding these two algorithms, it might help to think that
a propositional formula A with n variables and m clauses forms a landscape in
the space {0, 1}n × {0, 1, . . . ,m}. The {0, 1}n corresponds to all the possible
assignments of truth values to the n variables, and {0, 1, . . . ,m} represents the
“height”, the total number of clauses that are violated by (evaluate to ⊥) under
the particular truth assignment. It is then an optimisation problem to find an
assignment that minimises this height. Figure 2.5 shows an incomplete diagram
of such a landscape. It only portrays the boolean assignments, without the
corresponding height values, but it nevertheless is a useful visualisation. One
can imagine a local search algorithm starting off in one possible truth value
assignment, and moving to a possible assignment that has a lower height than
the current assignment. In this sense, SAT solving becomes gradient descent.

(1, 1, 1)

(0, 1, 1) (1, 0, 1) (1, 1, 0)

(0, 0, 1) (0, 1, 0) (1, 0, 0)

(0, 0, 0)

Figure 2.5 – A diagram depicting the possible truth value assignments for a k-
sat problem with 3 propositional variables. A local search technique will “walk”
along this diagram, and try to minimise the number of false clauses under the
assignment. If such a landscape has no local minima, a greedy descent algorithm
will converge to an optimal solution

It was believed that a method of SAT solving based on a greedy local descent will
not work well in practice because it will quickly fall into local minima, i.e. the
algorithm will be left with a small number of clauses remaining unsatisfied. This
was found to be false, and a greedy search algorithm, GSAT was found to very
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quickly converge to a feasible minimum and even outperform the backtracking-
based approaches at the time of its introduction.

GSAT is based on a randomised local search technique. It starts off by assigning
random truth values to the CNF formula. Then, it moves in the direction
of greatest descent by flipping the variable that will maximise the decrease in
the total number of clauses left unsatisfied. It does this either until it finds a
satisfying assignment, or until a pre-set upper bound on the number of iterations
is reached. This process is repeated until some predefined number Max-Tries.
GSAT is presented in algorithm 1.

Algorithm 1: GSAT

Input: A CNF formula F
Data: Integers Max-Flips and Max-Tries
Output: A satisfying assignment for F , or Fail
begin

for i← 1 to Max-Tries do
σ ← a randomly generated truth assignment to F
for j ← 1 to Max-Flips do

if σ satisfies F then return σ
v ← a variable flipping which results in the greatest decrease
(possibly negative) in the number of unsatisfied clauses
Flip v in σ

end

end
return Fail

end

GSAT performs relatively well. On a SAT problem with a large number of vari-
ables, it is actually unlikely for the procedure to get stuck in a local minima (a
plateau from which there is no move (a flip of a single variable) that decreases
the break-count - the number of clauses in the formula that become unsatisfied
by the resulting of the proposed move). However, it might take GSAT a very
long time before finding its way out of a plateau. A proposed improvement is
WalkSAT. WalkSAT interleaves the greedy search strategy with random moves,
similar in spirit to the Metropolis algorithm in Monte Carlo Markov Chains
(MCMC). In addition, the algorithm focuses the search by selecting variables
to flip that are part of a currently unsatisfied clause. WalkSAT is presented in
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algorithm 2.

Algorithm 2: WalkSAT

Input: A CNF formula F
Data: Integers Max-Flips, Max-Tries, and noise parameter p ∈ [0, 1]
Output: A satisfying assignment for F , or Fail
begin

for i← 1 to Max-Tries do
σ ← a randomly generated truth assignment to F
for j ← 1 to Max-Flips do

if σ satisfies F then return σ
C ← a random unsatisfied clause in F
if ∃ variable x ∈ C such that break-count = 0 then

v ← x
end
else

With probability p:
v ← a variable from C chosen at random

Otherwise (with probability 1− p)
v ← a variable form C with lowest break-count

end
Flip v in σ

end

end
return Fail

end

The motivation for looking at various algorithmic approaches for incomplete
SAT solving is to help in design and understanding of a dynamical system
version of SAT solving which we present later in the paper. In such a system,
variables are allowed to take truth values in the range [−1, 1] ∈ R, but the
approach is similar to that of incomplete algorithms like WalkSat and GSAT.

Formula Hardness

There is an interesting observation regarding the ratio α = M
N

of clauses to
variables for a K-SAT instance (K ≥ 3, but since every K-SAT instance can be
converted to 3-SAT, we can simply state this for 3-SAT). 3-SAT problems are the
“hardest” (by counting the number of steps in the DP procedure) whenever α is
around between 4 and 5, with the hardest problems occurring at α ≈ 4.26. This
transition from easy, to hard, and back to easy problems is shown in Figure 2.6.
This motivates benchmarking SAT solvers on problems where α ≈ 4.26.
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Figure 2.6 – Computational difficulty transition on 3-SAT problems. Adapted
from [KSS08]

State of the Art Incomplete SAT Solving - Survey Propagation

A recent and very novel technique for incomplete SAT solving is survey propa-
gation presented in [KSS07]. Survey propagation is based on ideas from belief
propagation. The SAT formula is expressed as a graphical model, and marginal
probabilities for variable assignments are computed using belief propagation.
Variables with the most extreme marginal probabilities are then assigned con-
crete values and the process of belief propagation is continued. Even though
this method is incomplete, it was shown in [KSS07] that it almost never has
to backtrack. It is currently the only technique known to solve random 3-SAT
instances in the hardest region (α ≈ 4.26) with over 1 million variables in near-
linear time.

2.3 Dynamical Systems

Most generally, a dynamical system consists of a set of variables describing the
current state of the system, together with a set of rules that deterministically
govern the evolution of the state variables over time [Izh07]. The rules can be,
for example, the application of a continuous map on a metric space, or a set of
differential equations. We concentrate on dynamical systems that are described
by differential equations.

We present a simple example of a dynamical system that models the predator
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and prey population using differential equations; it is the simplest model for
population dynamics and is named the Lotke-Volterra model [Hop06]. Let x
represent the population of prey, and y represent the population of predators.
The rules governing the evolution of both populations are:

dx

dt
= (b− py)x

dy

dt
= (rx− d)y

where

• b models the growth of x (prey) in the absence of predators (y)

• p measures the impact of predation. The prey population will grow if
b > py

• d measures the death rate of the predators in the absence of prey

• r measures the immigration of new predators when prey are around. The
predator population will grow if rx > d.

Given the initial populations and the above rules with sensible parameter values,
we can model and plot both populations.
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Figure 2.7 – Simulating the predator-prey example with d = 4, r = 0.5, b = 1.5,
p = 0.5. Notice that the system exhibits periodic behaviour.

2.3.1 Simulating differential equations on a computer

Given rules as differential equations, we need a way to simulate them on a
computer. The simplest and most inaccurate is the Euler Method. The family
of Runge-Kutta methods gives much higher precision.
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Euler Method

Given y(0), dy
dt

= f(y, t), and a time-step ∆t, we simulate the system as follows:

y(t+ ∆t) = y(t) + ∆tf(y(t), t)

Runge-Kutta Methods

While simple, the Euler method is usually not precise enough to simulate many
dynamical systems. There is a whole family of Runge-Kutta integration meth-
ods much more precise than the Euler method, but the most popular one is
Runge-Kutta-4 (RK4, the 4 standing for the number of approximations used),
and works as follows:

k1 = f(y(t), t)

k2 = f(y(t) + 0.5∆tk1, t+ 0.5∆t)

k3 = f(y(t) + 0.5∆tk2, t+ 0.5∆t)

k4 = f(y(t) + ∆tk3, t+ ∆t)

y(t+ ∆t) = y(t) +
1

6
∆t(k1 + 2k2 + 2k3 + k4)

For the simulations in this report, we use Matlab’s ode45, which is an adaptive
version of RK45, which is required to make sure the simulations are correct.
The method works by computing y(t+∆t) for both fourth-order and fifth-order
RK methods. A large difference between the two indicates a large error. If
that’s the case, the ode45 method will reduce the step size ∆t so as to reduce
the error below a predefined threshold.

2.4 Optimisation Problems

An optimisation problem is the problem of finding the best possible solution
from all feasible solutions. Usually, optimisation problems are classified either
as combinatorial or continuous optimisation problems. In this paper, we are
looking at how problems that are usually solved via combinatorial optimisation
can be cast to the continuous domain, solved there, and mapped back to the
right domain.

In its most general form, a continuous optimisation problem is

minimisef(x)
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subject to

gi(x) ≤ 0 ∀i ∈ 1 . . .m

hj(x) = 0 ∀j ∈ 1 . . . p

where f(x) : Rn → R is called the objective function, gi(x) is a set of inequality
constraints, and hj(x) is a set of equality constraints. A maximisation problem
can easily be cast to a minimisation problem: max f(x) = −min−f(x).

In contrast, a combinatorial optimisation problem is the problem of finding an
optimal solution from a finite and discrete set of solution objects. Common
combinatorial optimisation problems include the Travelling Salesman Problem
(TSP), N-Rooks, N-Queens, and the N-SUM problems. We look at the problem
statements of each these problems.

2.4.1 Examples

Travelling Salesman Problem

The travelling salesman problem is as follows: Given a list of cities and distances
between them, find the shortest route that visits each city exactly once and
returns to the point of origin.

N-Rooks

The N-Rooks puzzle is to figure out how to place N rooks onto an an N × N
chessboard such that no rook attacks any other rook.

N-Queens

The N-Queen puzzle is very similar to the N-Rooks puzzle, except we have to
place N queens onto an N × N chessboard such that no queen attacks any
other queen. Figure 2.8 shows visually the solutions to the N-rooks and N-
queens problems
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80ZRZ0Z0Z
7Z0Z0ZRZ0
60Z0ZRZ0Z
5Z0ZRZ0Z0
40Z0Z0ZRZ
3S0Z0Z0Z0
20Z0Z0Z0S
1ZRZ0Z0Z0

a b c d e f g h

(a) A solution to the N-rooks Problem

80Z0ZQZ0Z
7Z0L0Z0Z0
6QZ0Z0Z0Z
5Z0Z0ZQZ0
40Z0Z0Z0L
3ZQZ0Z0Z0
20Z0L0Z0Z
1Z0Z0Z0L0

a b c d e f g h

(b) A solution to the N-Queens Problem

Figure 2.8 – Solutions of N-rooks and N-queens problems

2.5 Related Work

A large part of the paper is based on understanding, replicating, and trying to
simplify the work presented in [ERT11]. The referenced paper presents a way
of solving SAT problems using continuous dynamical systems which we present
and explore further in this paper.

2.5.1 Solving Sudoku using continuous dynamical sys-
tems

The same authors who presented a way of solving SAT using continuous dynam-
ical systems applied their technique to solving Sudoku puzzles [ERT12]. The
idea is to map the Sudoku problem to an instance of a SAT problem, such that
solving the SAT problem yields a solution to the original Sudoku puzzle. The
authors find such a mapping, and then solve the resulting logical formulas using
the SAT solver they developed. Interestingly, the difficulty of the resulting SAT
problem is an indicator of the difficulty of the original Sudoku puzzle.

2.6 Implementation

All the simulations for this project are ran in Matlab. Python was used as a
scripting language for various tasks throughout the project.
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Preliminary work

The purpose of this section is to document my exploration of casting opti-
misation problems other than SAT as dynamical systems and exploring and
interpreting the results.

3.1 N-Rooks

We want to place N rooks on an N × N board such that no rook attacks any
other rook. Let Vij represent whether there is a rook in row i, column j on the
chessboard. We can express the game with the following constraints:∑

i,j

∑
k 6=j

VijVik = 0 = E1 (3.1)∑
j,i

∑
k 6=i

VijVik = 0 = E2 (3.2)

(
∑
i,j

Vij −N)2 = 0 = E3 (3.3)

The first constraint says that every row can have at most one non-zero value.
The second constraint says that every column can have at most one non-zero
value. The final constraint ensures that there are exactly N rooks on the board.
We can then define the energy function E = E1 +E2 +E3. A state with E = 0
corresponds to a solution of the N-Rooks problem.

As shown in the Background section and [HT85], the general form for an energy
function of a Hopfield network is

E = −1

2

∑
i,j

wijvivj

The input potential ui to neuron i is − ∂E
∂vi

=
∑

j wijvj.
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Instead of using the sgn function to threshold the neuron, we will use the smooth
function tanh which approximates the sgn function but is smooth around 0.
Then, we have:

v(u) =
1

2
(1 + tanh(αu))

Then, as shown in [HT85], we have the update rule:

Uij ← −

(
A
∑
k 6=i

Vij +B
∑
k 6=j

Vij + C(
∑
i,j

Vij − n+ σ)

)
(3.4)

Vij ← v(Uij) (3.5)

where A,B,C,σ are parameters.

I run the network with A = B = 500, C = 200, α = 50, σ = 3, and a random
initial assignment to U . The network converges to a solution of the N rooks
problem, as shown in Figure 3.1

(a) The network while working. The
colour of the square corresponds to
Uij , the current potential of cell Uij .

(b) The network in its final state - a
solution to N-rooks

Figure 3.1 – Evolution of the network that solves the N -rooks problem

3.2 Travelling Salesman Problem (TSP)

In TSP, we have a list of N cities with their locations. The aim is to start at any
one city, visit each city exactly once, come back to the starting city, all while
minimising the total distance travelled. In graph theoretical terms, given an
undirected weighted graph, we want to find a Hamiltonian cycle that minimises
the weight.
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We want to solve this in a way similar to the way we solved N-Rooks. Lets
define an N × N matrix V , where Vij = 1 if and only if the j’th stop on the
final tour is city with index i. Given that, we need to express the following
constraints:

• We must visit every city at least once

• At each stage of the tour, we can visit at most one city

These two constraints imply that every row and column of V must have exactly
one cell with a 1 in it. This is exactly N-Rooks for which we already have a
solution. Additionally, we need to express a constraint that will minimise the
total cost. Let dij be the distance between cities i and j. Then, to minimise
the length of the total tour we must minimise

L =
∑
i,j,k

dijxikxj,k+1

where the indices are taken modulo N , the number of cities, so that xj,N+k =
xj,k. This allows us to “wrap around” the V matrix. We must then minimise

E =
∑
i,j

∑
k 6=j

VijVik +
∑
j,i

∑
k 6=i

VijVik + (
∑
i,j

Vij −N)2 +
∑
i,j,k

dijxikxj,k+1

This gives the following update rule for Uij the potential for cell (i, j).

Uij ← −

(
A
∑
k 6=i

Vij +B
∑
k 6=j

Vij + C(
∑
i,j

Vij − n+ σ) +D
∑
y

diyVy,j+1Vy,j−1

)
Vij ← v(Uij)

I simulate the above system in Matlab, placing randomly 10 cities onto the unit
square. A resulting solution is shown in Figure 3.2.

While this is a very interesting way to solve TSP, it is by no means good at
all. We are not guaranteed to converge to a minimal tour, and we are not even
guaranteed to converge to a correct tour. This is still an interesting area for
research since it is a way of thinking of a discrete, step-by-step optimisation
process in a global and parallel way. At every update of the system, we are
taking into account many different possibilities of what tour to take. Another
interest for expressing combinatorial problems this way is that we can construct
analog, specialised circuits to solve such problems, as presented originally by
Hopfield and Tank in the paper that introduces the Hopfield network [HT85].
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Figure 3.2 – 10 cities on the unit square, and a solution arrived at using the
network as presented above

3.3 Image Reconstruction

In this section, we use a Hopfield network to perform simple image reconstruc-
tion. We train the network to store binary images of the letters A,B,C, where
each image is 10 by 10 pixels wide, and hence resides in {−1, 1}100 where 1
represents white, and −1 black. After the training phase, I present the network
with a distorted image of one of the letters (some pixels flipped, but still resem-
bling the original letter - see Figure 3.3), and allow it to converge iteratively to
one of the stored patterns, as described in the background section on Hopfield
Networks.

(a) An example training pattern
for the network

(b) An example of a broken pat-
tern that the network is able to
reconstruct back to Figure 3.3a

Figure 3.3 – Input to the Hopfield Network

Figure 3.4 shows a graphical implementation of the procedure. The user can
pick a “broken” image of a letter from a predefined set of images, and see the
live reconstruction happen as the network eventually converges to one of the
initially stored patterns.

The purpose of this section was not to go into too much detail, but to show the
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Figure 3.4 – A GUI showing the application of Hopfield networks to the problem
of retrieving a stored pattern. In this case, the stored patterns are binary images
of letters, and the task is to reconstruct the original image given a broken image.

application of dynamical systems, in particular the Hopfield network, to solve
combinatorial problems, even NP-complete ones such as TSP. From now on,
we will concentrate on exploring and solving SAT problems using dynamical
systems.
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Chapter 4

Dynamical Systems for SAT
Solving

In this chapter, we look at three different ways of expressing the satisfiability
problem as a continuous dynamical system. The first two methods presented
were developed in [ERT11] and [MTER12], and the third method is unpublished
work by Murray Shanahan.

Keep in mind that the purpose of the systems is not to create a faster SAT solver
(these systems are many orders of magnitude slower), but rather to explore the
casting of a problem that appears completely discrete to the continuous domain.
When expressed as a dynamical system, the optimisation problem can be solved
on a specialised analog circuit, or even on something based on real neurons.

4.1 Modelling with unbounded variables

The approach shown here is presented in [ERT11].

We are given a K-SAT problem with N propositional variables and M clauses.
For each propositional variable xi, we introduce the continuous variable si ∈
[−1, 1], with si = 1 corresponding to the i’th propositional variable being >,
and si = −1 to the xi’th variable being equal to ⊥. All the other possible
continuous values represent the degree of “truthness” of propositional variable
xi.

Let Cm represent the m’th clause, for example C1 = x4 ∨ ¬x2 ∨ x1. The whole
CNF formula can be encoded as a matrix cmi:

cmi =


1 if xi ∈ Cm
−1 if ¬xi ∈ Cm
0 if xi /∈ Cm and ¬xi /∈ Cm
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We define a constraint function Km : [−1, 1]N 7→ R:

Km(s) =
∏

i∈V (m)

1

2
(1− cmisi) = 2−k

N∏
i=1

(1− cmisi) (4.1)

where Vm are the propositional variables occurring in clause m. The intuition
is to have this function express how far away a clause is from being satisfied.
1
2
(1 − cmisi) ∈ [0, 1] expresses how far away the variable value si is from what

it needs to be in clause m, cmi. If it agrees on the value, then cmi = si, and
1
2
(1 − cmisi) = 0. Since the constraints are in CNF, only one of the literals

needs to evaluate to >, and this is why we take in the function Km we take the
product. Hence, clause m evaluates to > under s iff Km(s) = 0.

We can now define an energy function E(s):

E(s) =
M∑
m=1

Km(s)2

The goal is then to find a solution s∗ ∈ {−1, 1}N with E(s∗) = 0. Such solutions
s∗ will the global minima of E, although finding these minima directly will
usually not succeed because of trapping non-solution attractors. To solve this,
the authors of [ERT11] provide a modified energy function V (s, a):

V (s, a) =
M∑
m=1

amKm(s)2

where the variables am ∈ (0,∞) are auxiliary variables similar to Lagrange
multipliers. The idea is that the growth of these variables will eventually force
us out of local minima. The continuous time dynamical system for solving SAT
is then defined as:

dsi
dt

= (−∇sV (s, a))i =
M∑
m=1

2amcmiKmi(s)Km(s), i = 1 . . . N

dam
dt

= amKm(s), m = 1 . . .M

where Kmi = Km

1−cmisi
. The initial conditions for s ∈ [−1, 1]N are arbitrary,

but am has to be strictly positive. [ERT11] shows how solutions to a SAT
problem will be attractive fixed points of this defined dynamical system. The
key properties of this system include:

• The dynamics of s stays confined to [−1, 1]N .

• Solutions to a SAT problem will be attractive fixed points of the system

• There are no limit cycles
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• For satisfiable formulae, the only fixed point attractors are the global
minima of V with V = 0.

• The formulation uses unbounded variables am.

Figure 4.1 presents simulating the system. The important concept to notice is
that the clause weights are monotonically increasing. This is the feature of the
system that makes it eventually get out of minima.

Figure 4.1 – Solving a 50 variable hard SAT problem using the unbounded
dynamical system as presented in [ERT11]

4.2 Modelling as a Recurrent Neural Network

with bounded variables

In [MTER12], the same authors present a similar system, this time encoded as
a CTRNN (Continuous-Time Recurrent Neural Network), akin to a continuous
version of the Hopfield network shown in the Background section.

The general form of dynamics in CTRNNs is:

dxi
dt

= −xi(t) +
∑
j

wijf(xj(t)) + ui

where xi is the current value of a cell, wij is the connectivity between cells i and
j, f is an output function (usually sigmoidal), and ui is a bias term for cell i.

To encode a SAT problem in this way, we first express it as a bipartite graph with
connections between variable cells and clause cells. This is shown in Figure 4.2.

29



30 CHAPTER 4. DYNAMICAL SYSTEMS FOR SAT SOLVING

Figure 4.2 – A bipartite graph that encodes a SAT problem. The connection
labels are based on the connectivity matrix cmi. If a variable i occurs positively
in clause m, then we have positive connection between si and aj and if it occurs
negatively, we have a negative connection. Figure adapted from [MTER12]

Figure 4.3 – Output functions for the two cell types: variable cells, and clause
cells. They work as threshold units.

There are two output functions, one for each of variable and clause cells. For
variables, we have:

f(si) =
1

2
(|si + 1| − |si − 1|)

and for clause cells:

g(am) =
1

2
(1 + |am| − |1− am|)

This is easier to interpret graphically, as shown in Figure 4.3. There is no bias
term for variable cells, but we need a 1 − k bias term for all clause cells. The
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dynamical system, parametrized by A, the self-coupling parameter for variable
cells, and B, the self-coupling parameter for clause cells, is:

dsi
dt

= −si(t) + Af(si(t)) +
∑
m

cmig(am(t)) (4.2)

dam
dt

= −am(t) +Bg(am(t))−
∑
i

cmif(si(t)) + (1− k) (4.3)

[MTER12] shows the following important properties of the system:

• All the variables remain bounded

• Every K-SAT solution has a corresponding stable fixed point.

• A stable fixed point of the system always corresponds to a K-SAT solution

Even though a stable fixed point of the system always corresponds to a K-SAT
solution, the dynamics can still get trapped in a limit cycle and not converge
to a solution.

We have implemented this dynamical system in Matlab and solved 75 randomly
chosen hard 3-SAT problems with 20 variables (α ≈ 4.26) and varied the A and
B parameters. The results are shown in Figure 4.4.

The system performs well and solves many hard 20 and 50 variable problem 3-
SAT problems. Figure 4.5 shows the system eventually converging to a solution
fixpoint after a long chaotic transient. As noted, the system can get stuck in a
limit cycle, which is demonstrated in Figure 4.6.
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Figure 4.4 – Proportion of solved hard random 3-SAT problems with time limit
10000 with various parameters of A,B when solving using the bounded dynamical
system for SAT as presented in [MTER12]

Figure 4.5 – Using the bounded SAT dynamical system as presented in
[MTER12] to solve a problem. A successful solution is found after a long chaotic
transient.
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Figure 4.6 – Using the bounded SAT dynamical system as presented in
[MTER12] to solve a problem. The system gets trapped in a limit cycle
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4.3 A third approach

In this section we present another formulation as developed by Murray Shana-
han. We use again Equation 4.1, Km(s), that expresses the current cost of the
clause, and is 0 if and only if clause m is satisfied.

The main idea is that clauses push the variable values towards the value that is
required of it in that clause, in an attempt to satisfy it. Figure 4.7 shows this
kind of push-pull on a bipartite graph.

Figure 4.7 – A bipartite graph representation of the 2-SAT problem (A ∨B) ∧
(¬B ∨ C) ∧ (¬A ∨ ¬C). Clauses push or pull variables towards the values that
would make the clause satisfiable. Diagram adapted from [Sha]

The amount of pull clause m exerts on variable i is weighted by:

• λm - A weighted exponential that keeps track of the clause cost Km

• The sum of individual variable costs 1
2
(1−(sjcmj)) for variables j in clauses

m other than i.

This system is different and interesting, in the sense that unlike the previous
two configurations, in here we take into account past clause costs Km by keeping
track of them using a weighted exponential λm. That is, we want dλm

dt
∝ Km −

λm. This leads to the following dynamical system:

dλm
dt

= α(Km − λm) (4.4)

dsi
dt

=
1

Γ

M∑
m=1

λm
 ∑
j∈V (m),j 6=i

1

2
(1− sjcmj)

 (1− |si|)cmi

 (4.5)

where Γ =
∑M

m=1 λm, and 0 < α ≤ 1.

The system is parametrized by the one parameter α, the influence of the current
clause cost on the cumulative clause cost. Figure 4.8 shows experimental results
for different values of α. We find the optimal α parameter to be ≈ 0.015.
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The system is different from the previous two shown above, but exhibits the
following properties:

• A solution s∗ is not a fixed point of the dynamical system. Nevertheless,
if s∗ is a solution to a SAT problem, then ∀mKm(s∗) = 0, and hence λm
will decay with rate α towards 0.

• The system can get stuck in non-solution attractors (s′, λ′). The influences
from all clauses can cancel each other out even if ¬∀mKm(s′) = 0. An
example of this is shown in Figure 4.10.

• All the variables in the system are bounded between -1 and 1.

• We simulate the system until all the cumulative clause costs λm are less
than a certain threshold, taken to be 0.1. Then, the converged solution is
taken to be sgn(s).

Interestingly, even though the system does not establish the key fixed point
properties we observed in the previous two, it still deals surprisingly well with
random 3-SAT instances, at times dealing with a problem where the previous
bounded method would get stuck in. Figure 4.9 shows the dynamical system
converging to a solution of a hard (clause-to-variable ratio ≈ 4.26) 50 variable
problem.

(a) Varying α parameter between 0 and 1. (b) Varying α between 0 and 0.03

Figure 4.8 – Varying the α parameter on two scales. The y axis shows the mean
number of steps taken to solve the problem. A large number indicates that a
solution was not found in the allotted time period. The tests were ran on a suite
of random, hard, 3-SAT, 20 variable problems. We find the optimal α parameter
to be ≈ 0.015.
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Figure 4.9 – Running the dynamical system as developed by Shanahan. All the
clause costs decay to zero and we find a correct solution
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Figure 4.10 – Running the dynamical system as developed by Shanahan. We
get stuck in a non-solution attractor. The cumulative clause costs do not drop
down to zero
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4.3.1 A possible alteration

A possible alteration of this approach we propose, is replacing the summation
in Equation 4.5 with a product, leading to an approach similar in spirit to that
present in [ERT11], except with bounded variables. The adapted system is
then:

dλm
dt

= α(Km − λm) (4.6)

dsi
dt

=
1

Γ

M∑
m=1

λm(K(m)− 1)

 ∏
j∈V (m),j 6=i

1

2
(1− sjcmj)

 (1− |si|)cmi

 (4.7)

where K(m) is the number of variables in clause m. This alteration leads to a
much larger variation in both the variable values and cumulative clause costs and
to much longer solve times for easier problems - a problem that the unmodified
version usually solves in around 2000 time steps takes around 8000 steps to
solve with this alteration. Nevertheless, a hard 50 variable 3SAT problem1 that
the unmodified version always gets stuck is, is solved by this modified version
at the expense of large fluctuations of the variable values and cumulative clause
costs. A successful solving of the hard 3SAT formula is shown in Figure 4.11

Figure 4.11 – Solving a 50 variable hard SAT problem with a modified version
of the third approach. The system successfully converges to a solution, at the
expense of large fluctuation in both variable and cumulative clause weight values

1uf50-02.cnf from a test suite of randomly generated hard 3SAT problems
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Chapter 5

SAT Applications

Having looked at different possible dynamical systems for solving boolean k-
SAT, we now look at possible applications to examine the feasibility of SAT
solving via dynamical systems. We encode N-Rooks and N-Queens as SAT
problems, and find that all formulations can deal with these simple problems.
For a more interesting application, we encode the logic game Bridges into SAT,
and apply the dynamical system approach.

5.1 N-Rooks and N-Queens

In this section we create a representation of the N-Rooks problem as a SAT
problem, its natural extension to the N-Queens problem, and solve both prob-
lems using the continuous dynamical system presented earlier.

5.1.1 N-Rooks

As a reminder, in the N-Rooks problem we are to place N rooks on an N ×N
chessboard such that no rook attacks any other rook.

Let rij be a boolean variable representing whether there is a rook present at tile
(i, j) on the chessboard. We can then express the required constraints in SAT
as follows:

1. Every row and column has to have at least one rook( ∧
i∈1...N

∨
j∈1...N

rij

)
︸ ︷︷ ︸

Row Constraints

∧( ∧
i∈1...N

∨
j∈1...N

rji

)
︸ ︷︷ ︸

Column Constraints
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2. Every row and column has to have at most one rook

This can be expressed by saying that for every pair (ri,j, ri,k) where i 6= k,
we have ¬(rij ∧ rik) which is equivalent to ¬rij ∨¬rik which is in CNF as
desired. We do the same procedure for the all the column constraints.

The two constraints expressed above together imply that each row and column
has exactly one rook, and is hence a solution to the problem. The total number
of propositional variables this representation uses is N2, one for each rij, and
the number of clauses is 2N +N2(N − 1), a third degree polynomial.

5.1.2 N-Queens

The above solution is easily extended to the N-Queens problem. We need to
add additional constraints that disallow a queen attacking another queen across
a diagonal.

If two separate coordinate points (i, j),(k, l) lie on a common diagonal, then we
must add the constraint ¬(rij ∧ rkl) which is equivalent to the CNF formula
¬rij ∨ ¬rkl

All the systems as presented in the previous section were able to deal with these
encodings for N = 8. Since N-Rooks and N-Queens are very simple problems,
we do not analyse the dynamical systems further with respect to those two
problems, but rather, to evaluate the dynamical systems, we look at a more
interesting application to the logic puzzle Bridges.

5.2 Game of Bridges

In this section we look at formulating the game Bridges1, also called Hashi-
wokakero as a SAT problem, and see whether the continuous time dynamical
system for SAT solving is able to deal with the resulting problem. The decid-
ability of this puzzle is NP-Complete [And]. The aim of the study is to see the
performance of the solver on a real-life problem since experimental results in
[MTER12] only look at random SAT problems.

5.2.1 Game Definition

Bridges is played on an N ×N grid. At the beginning, each grid intersection is
either empty, or has an island node with an associated number n, 1 ≤ n ≤ 8.

1http://www.puzzle-bridges.com
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The goal is to place horizontal and vertical bridges on the grid intersections
such that:

1. Each grid intersection is either empty, has at most two bridges of the same
type (either vertical or horizontal, no diagonal bridges are allowed), or is
an island node

2. A bridge must be continuous and must have two island nodes at its end-
points

3. Bridges cannot cross (no grid intersection point can have a vertical and
horizontal connection at the same time)

4. The total number of bridges connected to an island must equal the degree
of the island.

5. Every island must be reachable from every other island

Figure 5.1 shows an initial board state and a solution to it. In all figures and
equations about Bridges we place the origin (1, 1) at the top left, and so grid
intersection (2, 5) in Figure 5.1 is the island with degree 1.

3 4 4

1 1

4 4

2

4 5 4 2

(a) An initial state for the Bridges game

3 4 4

1 1

4 4

2

4 5 4 2

(b) A possible solution

Figure 5.1

In the following sections we describe a progressive attempt at formalising this
problem as a SAT instance, look at the complexity of the resulting problem, and
see if the continuous dynamical system solver is able to converge to a solution
to this real life problem.

5.2.2 First attempt

In the first attempt at formalising Bridges, I ignore constraint 5 (I allow discon-
nected components), and furthermore, restrict myself to allowing at most one
bridge. This means each island can now have degree at most 4.

41



42 CHAPTER 5. SAT APPLICATIONS

The idea is to have for each of the N ×N grid intersections two propositional
variables: vij (for a vertical bridge), and hij (for a horizontal bridge) and express
the constraints of the game using these 2N2 propositional variables.

• Connectivity Constraints

We want the bridges to be connected, so if we have a horizontal bridge
at tile (i, j), then tiles (i, j − 1) and (i, j + 1) must also be a horizontal
bridge. Similarly, for a vertical bridge at tile (i, j) we require tiles (i−1, j)
and (i+ 1, j) to have a vertical bridge. We can express this as:

hi,j → hi,j−1 ∧ hi,j+1 ≡ (¬hi,j ∨ hi,j−1) ∧ (¬hi,j ∨ hi,j+1)

vi,j → vi−1,j ∧ vi+1,j ≡ (¬vi,j ∨ vi−1,j) ∧ (¬vi,j ∨ vi+1,j)

• Bridges cannot cross

This means for every non-island tile (i, j) we can’t have both types of
bridges. This can be expressed as

¬(hi,j ∧ vi,j) ≡ ¬hi,j ∨ ¬vi,j

for all tiles (i, j) which are empty in the original problem.

• Bridges have to start and end at an island

For every island node (x, y), force vx,y and hx,y to be both true. This
means that an island node will allow other bridges to connect to it. The
connectivity constraint together with this constraint, imply that every
bridge starts at and ends at an island, and is continuous throughout.

• Degree constraints

We now need to express that if an island node has a connectivity constraint
n, then exactly a total of n horizontal and vertical bridges connect to it.
This is more difficult to express than the previous constraints. I express
it as a simple enumeration. Given an island node at (x, y) with degree
n, look at which directly neighbouring tiles are empty (there can’t be
another node directly there, and it can’t be outside of the game board).
There must be k ≥ n such tiles. Then, take every one of

(
k
n

)
combinations

and express that the particular n variables chosen in this combination are
true, while the other k − n are false.

As an example, see Figure 5.2 which shows an initialised Bridges board.
The island at (4, 2) (marked in red) with degree 4 requires all possible
four connections. The possible choices are marked by dashed lines. The
relevant constraints for that node are then:

v3,2 ∧ v5,2 ∧ h4,1 ∧ h4,3
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2 2 2

1 4 3

1 1 2

Figure 5.2 – Generating island degree constraints

The node at (1, 4) with degree 2 (marked blue) has four possible bridge
locations, but it requires only two. There are

(
4
2

)
= 6 ways to choose how

the island should be connected.

(h1,3 ∧ h1,5 ∧ ¬v0,4 ∧ ¬v2,4)∨
(h1,3 ∧ ¬h1,5 ∧ v0,4 ∧ ¬v2,4)∨
(¬h1,3 ∧ h1,5 ∧ v0,4 ∧ ¬v2,4)∨
(h1,3 ∧ ¬h1,5 ∧ ¬v0,4 ∧ v2,4)∨
(¬h1,3 ∧ h1,5 ∧ ¬v0,4 ∧ v2,4)∨
(¬h1,3 ∧ ¬h1,5 ∧ v0,4 ∧ v2,4)∨

The orange node with degree 3 has only
(
3
3

)
= 1 choice of what bridges

need to be present in the solution, since it is at the edge of the board and
only has 3 candidate intersections to place a bridge at.

Notice that the first three conversions shown above produce formulas that are
already in CNF. The formula ensuring degree constraints for each node is in
DNF, and hence before being able to solve it with a SAT solver, we must convert
it to a CNF formula. This procedure is shown in Claim 1. As mentioned, this
procedure is exponential, and hence for a formula in DNF with x conjunctive
clauses, each with y literals, the resulting CNF formula will have yx clauses each
with x literals. This is inconvenient, and we later look at a way to reduce the
number of generated clauses for the formulas responsible for degree constraints.

5.2.3 Allowing for two bridges

We now modify the above construction to allow for the possibility of two bridges
between a pair of nodes. Instead of having variables hi,j,vi,j for each grid inter-
section, we need to have h1i,j, h

2
i,j, v

1
i,j, v

2
i,j - a horizontal and vertical variable for
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each possible bridge. This increases the total number of variables to 4N2. All
the constraints require only a small change to adapt to more bridges:

• Connectivity Constraints

We simply duplicate the connectivity constraints to account for another
bridge:

h1i,j → h1i,j−1 ∧ h1i,j+1 ≡ (¬h1i,j ∨ h1i,j−1) ∧ (¬h1i,j ∨ h1i,j+1)

v1i,j → v1i−1,j ∧ v1i+1,j ≡ (¬v1i,j ∨ v1i−1,j) ∧ (¬v1i,j ∨ v1i+1,j)

h2i,j → h2i,j−1 ∧ h2i,j+1 ≡ (¬h2i,j ∨ h2i,j−1) ∧ (¬h2i,j ∨ h2i,j+1)

v2i,j → v2i−1,j ∧ v2i+1,j ≡ (¬v2i,j ∨ v2i−1,j) ∧ (¬v2i,j ∨ v2i+1,j)

• Bridges cannot cross

For this constraint, we enumerate the four possibilities that are not allowed
to happen in a correct solution:

¬(h1i,j ∧ v1i,j) ≡ ¬h1i,j ∨ ¬v1i,j
¬(h1i,j ∧ v2i,j) ≡ ¬h1i,j ∨ ¬v2i,j
¬(h2i,j ∧ v1i,j) ≡ ¬h2i,j ∨ ¬v1i,j
¬(h2i,j ∧ v2i,j) ≡ ¬h2i,j ∨ ¬v2i,j

• Bridges have to start and end at an island

Same idea as in the one-bridge solution - force all of h1i,j, h
2
i,j, v

1
i,j, v

2
i,j all

to be true.

• Degree constraints

Again, we use the same idea as in the one-bridge solution - enumerate all
the

(
k
n

)
options. The resulting formula is in DNF and can be converted

to CNF by Claim 1 resulting in an exponential increase in the amount
of clauses. This was still feasible in the one-bridge case, but is no longer
feasible here. In the worse case, we have an island node with required
degree 4 and 4 empty slots around in, each admitting 2 possible bridges,
for a total of

(
8
4

)
= 70 combinations. Each of those combinations has 8

variables, so the conversion to CNF produces 870 ≈ 1.65 × 1063 with 8
literals each. This is infeasible for solving. In the next section, we show
how to reduce the number of clauses in the CNF representation so that
solving the problem is feasible.

Claim 3. For a given Bridges game, let A be a CNF formula representing the
constraints for a given Bridges game as itemised above. Then a model M of A
is a solution to the given game. This follows by construction of the constraints
- we simply translate each game constraint into an equivalent SAT constraint.
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Linear size DNF to CNF conversion

Claim 1 presents a way to convert a DNF formula to an equivalent (Definition 3)
CNF formula. G.S. Tseitin shows in [Tse68] how to convert an arbitrary formula
to an equisatisfiable CNF formula such that the CNF formula scales linearly with
the size of the arbitrary formula.

Definition 7. Formulas A and B are said to be equisatisfiable iff either both A
and B have no models, or both have some models (and hence are satisfiable).

Here we are interested at converting a formula in DNF to equisatisfiable CNF
formula. The construction introduces new variables, and proceeds as follows.
Given a formula in DNF:

A = (a11 ∧ a12 ∧ · · · ∧ a1k) ∨ (a21 ∧ a22 ∧ · · · ∧ a2k) ∨ · · · ∨ (an1 ∧ an2 ∧ · · · ∧ ank)

construct a formula

B = (¬z1 ∨ a11) ∧ (¬z1 ∨ a12) ∧ · · · ∧ (¬z1 ∨ a1k)∨
(¬z2 ∨ a21) ∧ (¬z2 ∨ a22) ∧ · · · ∧ (¬z2 ∨ a2k)∨

...

(¬zn ∨ an1) ∧ (¬zn ∨ an2) ∧ · · · ∧ (¬zn ∨ ank)∨
(z1 ∨ z2 · · · ∨ zn)

The idea is to introduce a new variable zi for every clause in the DNF formula,
and say that zi → a1i ∧ a2i ∧ . . . aki, which is logically equivalent to the con-
struction above. In essence, variable zi is controlling whether to enable clause
i.

Claim 4. A and B are equisatisfiable. This follows by the Tseitin construction.
In addition, if an interpretation P is a model of B, then P is a model of A. This
is immediate since B has constraints that look like zi → a1i ∧ a2i ∧ . . . aki, so if
P (zi) = > then ∀1≤j≤kP (aij) = > and hence the clause (ai1 ∧ ai2 ∧ · · · ∧ a1k)
evaluates to > under P and so A is equivalent to > since it is in DNF.

Claim 5. For a given Bridges game, let A be a CNF formula representing
the constraints for a given Bridges game as itemised above, and let B a CNF
formula got by using the Tseitin conversion on the island degree constraints
part of A. A model of B is then a solution to the original game.

Proof. Assume there exists a solution to the given game. Then A is satisfiable
and a model M of A is a solution to the original game by Claim 3. A and B are
equisatisfiable by the Tseitin construction, so there exists a model M ′ of B. By
Claim 4, M ′ is also model of A, and so M ′ represents a solution to the original
game. If the game has no solutions, then A has no models, and neither does B
by equisatisfiability.
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5.2.4 Reducing the number of clauses

My first attempt at formulating Bridges as a SAT problem is correct, but it uses
more variables and creates more clauses than necessary, even after translation
to a small equisatisfiable formula. In this section, I show how to think of
Bridges in a graph-theoretical sense and hence express it using less variables
and constraints. We will use the game setup shown in Figure 5.3 to demonstrate
the technique.

The intuition is to create variables v1(i,j),(k,l) and v2(i,j),(k,l) iff the island node

(i, j) can directly on a vertical line see a different island node (k, l). The same
intuition is used for the horizontal case.

More formally, let T = {1 . . . N}2 be a set of all tiles in an N×N Bridges game.
Then T is partially ordered under the lexicographical ordering (i, j) ≤ (k, l)↔
i < k or (i = k and j ≤ l) and (i, j) < (k, l)↔ i < k or (i = k and j < l). I will
use a bold font to represent a valid grid location tuple using a single variable,
for example (i, j) = x ∈ T .

Let island(x) be a predicate representing that there is an island on tile x,
and let I = {x | x ∈ T, island(x)}, the set of nodes that are islands. Then,
let H(i, j) = {(i, j) | 1 ≤ k ≤ N, k 6= j, (i, k) ∈ I} be the set of all island
nodes that share the same horizontal line as an island at (i, j). Similarly, let
V (i, j) = {(i, j) | 1 ≤ k ≤ N, k 6= i, (k, j) ∈ I} be the set of all island nodes
that share the same vertical line with as an island at (i, j). We can then define
the direct horizontal Hd(x) and direct vertical Vd(x) neighbours of island node
(i, j) = x.

Hd(x) = {max {p | p ∈ H(x),p < x}}
⋃
{min {p | p ∈ H(x),p > x}}

Vd(x) = {max {p | p ∈ V (x),p < x}}
⋃
{min {p | p ∈ V (x),p > x}}

Then, Nd(x) = Hd(x) ∪ Vd(x) is the set of direct neighbours of island node
(i, j) = x. By the definition of the bridges game, 1 ≤ |Nd| ≤ 4. As an example,
for island node B in Figure 5.3, we have Hd(B) = {A,C},Vd(B) = {F}, and so
Nd(B) = {A,C, F}.

To partially recap, and further formalise Bridges, for a given game we have:

• N - the size of one side of a playing board. There are a total of N2 grid
intersections

• T = {1 . . . N}2 - the set of all grid intersections

• I ⊆ T - the set of grid intersections that have an island on them.

• Nd(x) - the set of islands directly accessible from grid intersection x.
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A1 B2 C2

D1

E3 F3

G2 H2

I1

J1 K2 L2

Figure 5.3 – An initial board state. The required island degree is prefixed with
a letter so that we can refer to a specific island by its assigned letter

• D : I 7→ {1 . . . 8}, the mapping giving each island its degree constraint

Then, an instance of the game Bridges is a tuple B = (N, I,D).

We will now use a graph to represent all the possible connections between all
pairs of island nodes for a given game B = (N, I,D).

Definition 8. A graph G = (V,E) is a tuple consisting of a set of vertices V
together with a set E ⊆ V 2 of edges. An edge labelling function LE : E 7→ X
for a graph G gives a label from the set X of labels to edges of G. A node
labelling function LV : V 7→ Y gives a label from the set Y of labels to nodes
of G.

Let G = (I, C) be a graph, where

C =
⋃
i∈I

{i} ×Nd(i)

is the edge set of all possible connections between islands. Define an edge
labelling function LC ,

LC((x,y)) =

{
H if y ∈ Hd(x)
V if y ∈ Vd(x)

which tells us the type of bridge (H for horizontal, and V for vertical) that can be
made between nodes at x and y. Additionally, use LI = D as a node labelling
function. For an example of transforming a game B to a connection graph G,
see Figure 5.4. In Figure 5.4b I label the nodes with a tag that gives them a
name and the node degree. For example, the node labelled A1 is actually node
(1, 1) and D((1, 1)) = 2 the degree constraint.

We can now express the constraints for a game B = (N, I,D) in terms of the
definitions in this section.
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A1 B2 C2

D1

E3 F3

G2 H2

I1

J1 K2 L2

(a) An initial state for the Bridges
game B

A1 B2 C2

D1

E3 F3

G2 H2

I1

J1 K2 L2

H
V

V

V
H V

V

V

H

H

H H

V

V

(b) A connection graph created from
B

Figure 5.4

• Propositional variables

We need a propositional variable for every possible connection between
two island nodes. Moreover, since each node can have up to 2 bridges, we
need twice as many variables as we would if only 1 bridge was allowed. We
also only need one variable to express possible bridges (a,b) and (b, a)
since our graph is undirected. Hence, the propositional variables are:

{h1a,b, h2a,b | (a,b) ∈ C, a ≤ b, LC(a,b) = H}
⋃

{v1a,b, v2a,b | (a,b) ∈ C, a ≤ b, LC(a,b) = V}

• Bridges cannot cross

I say that a bridge is an element of the edge set C. The intuition is to
state that we can’t have bridges x, y ∈ C at the same time if they cross
when drawn like the graph in Figure 5.4b. While this is very clear from
the illustration, I define it formally in terms of bridges x and y crossing.

Definition 9. Let P : C 7→ P(T ) be the function that takes a bridge
(a,b) and returns all grid intersections that the bridge occupies.2 Bridges
x, y ∈ E are said to cross iff P (x) ∩ P (y) 6= {}. It then follows that x
crosses y iff y crosses x.

Then, for every pair (x, y) = ((i, j), (k, l)) of bridges, if x crosses y, i ≤ j
and k ≤ l, add constraints to encode that in a correct solution, such a
crossing is not allowed to happen. If LC(x) = H, add the constraints:

¬h1x ∨ ¬v1y ¬h1x ∨ ¬v2y ¬h2x ∨ ¬v1y ¬h2x ∨ ¬v2y
and similarly, if LC(x) = V, add the constraints

¬v1x ∨ ¬h1y ¬v1x ∨ ¬h2y ¬v2x ∨ ¬h1y ¬v2x ∨ ¬h2y
2This is just all the points on the line segment connecting a with b
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The above encodes exactly that no bridges are allowed to cross in a solu-
tion.

• Degree Constraints

Now I need to encode the relevant degree constraints, that is, make sure
that in a solution, an island a with LI(i) = n connects to exactly n bridges.
We encode this using the same enumeration construction as shown in
subsection 5.2.3 ensuring that we use the Tseitin translation to reduce
the number of clauses. The total number of clauses generated this way is∑

i∈I
(

k
LI(i)

)
k + 1 where k = 2Nd(i), the total number of possible bridges.

This is because there are
(

k
LI(i)

)
ways to choose a particular set of Li(i)

bridges, and each such possibility is a conjunctive clause with k variables
and one extra clause introduced during the Tseitin translation.

The above construction produces a formula A such that if P is a model of A
then P represents a solution to the original Bridges game. In the following
section, I describe the implementation of formula generation, and try to apply
the continuous time SAT solver to solve a simple instance of the game.

5.3 Experimental Results for Bridges

I have implemented the generation of CNF formulas in Python for the all the
encodings for Bridges presented in the previous section, but will only study in
more detail the final, most optimal, graph-based representation.

As a comparison, I present in Table 5.1 the number of clauses generated using
the various methods for the variable, degree, and crossing constraints. We see
instantly that the naive methods without using the Tseitin conversion produce
an exponential number of clauses for degree constraints, and hence are unsuit-
able, although they were a motivating example along the way to finding a better
representation.

5.3.1 Data source for Bridges

To run experiments on my encoding, I used the games available from http:

//puzzle-bridges.com. The website classifies puzzles according to a difficulty
between 0 and 11. Difficulties 0,1,2 are on boards size 7× 7, 3-5 on 10× 10, 6-8
on 15 × 15, and 9-11 on boards sized 25 × 25. I scraped the first 200 puzzles
of each difficulty to use in my experiments for a total of 2400 games. On the
website, game boards are displayed as an image, and hence I wrote a simple
image recognition parsing tool to parse the boards into a format usable by the
other tools I have built.

49

http://puzzle-bridges.com
http://puzzle-bridges.com


50 CHAPTER 5. SAT APPLICATIONS

Variable Degree Crossing

Naive 1-Bridge 2N2
∑

i∈I 4( 4
LI (i)

) O(N2)

Naive 2-Bridge 4N2
∑

i∈I 8( 8
LI (i)

) O(N2)
Naive 2-Bridge-
Tseitin

4N2
∑

i∈I
(

8
LI(i)

)
8 + 1 O(N2)

Graph-Based
Tseitin

|C|
∑

i∈I
(

k
LI(i)

)
k + 1 O(|C|)

Table 5.1 – The number of clauses generated for each of the different types of
constraints (Variable, Degree and Connectivity) for the different encoding meth-
ods described.

5.3.2 Testing the encoding

The first interesting statistic to look at is how many clauses are generated per
game given a board size. I show the results in Figure 5.5. The more difficult the
problem is, the higher the variance in the number of clauses, with some problems
on a 25× 25 board requiring as many clauses as a problem on a 10× 10 board.

Figure 5.5 – A histogram with a distribution fit showing the number of clauses
generated for Bridges games with various board sizes using the most optimal SAT
encoding I have developed.

Mean Standard Deviation
7x7 537 238
10x10 1263 515
15x15 2975 1093
25x25 7420 2880

Table 5.2 – Means and standard deviations for total number of clauses generated
for various board sizes using the optimal SAT encoding

To ensure that my SAT encoding is correct, I solve some games from my ex-
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perimental game data set using MiniSat3, the open source minimalist and fast
SAT solver which can easily handle all the formulas I generate and solve them
in no longer than 0.01 seconds for the games on 25× 25 boards with difficulty
11. Figure 5.6 shows a solution to a large instance of the game confirming that
my encoding is correct, and giving me the ability to easily get the high-score on
http://puzzle-bridges.com.

4 4 5 4 3
2 3 2

4 4 4 5 1

2 3 4 4
1 2 2 1 2 3

4 3
2 1 2

1 5 5
1 1 4

2 4 3 1
6 6 6 4 3 3

4 5 1

3 4 2
2 4 4 1

2 5 2 2
2 1

3 1 1 4 2
2 5 1 3 3

2 5 5
4 5 2 3 4

3 1 1
4 4 2 1 1 2

3 3 4

Figure 5.6 – A solution to a difficult instance solved by Minisat with my encoding

5.3.3 Solving using the SAT dynamical system

I now look at whether the continuous dynamical system for SAT solving will
be able to converge to a solution of Bridges. The motivation is that while it
was shown to work relatively well for random SAT instances, other applications
weren’t looked at in detail. This evaluates whether such a system for SAT
solving can deal with non-random problems.

I have tried using the bounded dynamical system from [MTER12] (shown in
section 4.2), but irregardless of the A and B parameters, the system always
got stuck in a limit cycle. I conclude that while this system does solve
random 3SAT instances well, it does not cope with the SAT encoding to solve
Bridges.

3http://minisat.se/
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In [ERT12], the authors apply the unbounded dynamical system SAT solver to
solve Sudoku games. To evaluate my encoding and puzzle difficulty, I solve 200
puzzles each in difficulties Easy, Normal and Hard on a board size 7 × 7 and
10×10 using the unbounded dynamical system for SAT as shown in section 4.1.
Solution times for larger difficulties proved too computation-intensive for the
model.

Method

I solve 200 puzzles each in difficulties Easy, Normal and Hard on a board size
7 × 7 and 10 × 10, with a continuous time limit of 175, and store whether the
system found a solution, and if so, how much continuous time it took. The
integration was done using Matlab’s ode45 integrator (with a relative tolerance
of 10−3), which uses an adaptive step size to reduce error. In [ERT12], the
authors show that the length of chaotic transients in hyperbolic systems such
as this one decays exponentially. That is, let p(t) be the probability that the
system has not found a solution by time t. Then p(t) ∼ e−kt where k is called
the escape rate of the system. Using my collected data, I fit the function e−kt

and hence the find the escape rate, which I use to quantify the difficulty of the
puzzle. Figure 5.7, Figure 5.8, and Table 5.3 show the experimental results.

Figure 5.7 – Probability that the system will not solve a problem from a given
class by continuous time t for 7 × 7 boards. The difficulty is taken from games
on http://puzzle-bridges.com
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Figure 5.8 – Probability that the system will not solve a problem from a given
class by continuous time t for 10× 10 boards. The difficulty is taken from games
on http://puzzle-bridges.com

k −log10k
Easy 7x7 0.0204 1.69
Hard 7x7 0.0139 1.86
Easy 10x10 0.0097 2.01
Normal 7x7 0.0076 2.12
Hard 10x10 0.0047 2.33
Normal 10x10 0.0038 2.42

Table 5.3 – The escape rate k of the dynamical system used to solve the given
class of problems, together with its negative log to indicate puzzle hardness on
a logarithmic scale. The puzzles are listed in order of increasing puzzle hardness
as indicated by the escape rate k.

Implications for hardness

The interesting result is that in both the 7 × 7 and 10 × 10 boards, the game
that is claimed as “Hard” (for humans) has a higher escape rate k than the
games marked as “Normal”. See Figure 5.9 for a diagram showing the functions
p(t) ∼ e−kt for various difficulties and board sizes.

We conjecture that this is because of the clause-to-variable M
N

= α ratio. α is
a very good indicator of formula hardness, with α ≈ 4.26 marking the hardest
region for any current SAT solver (see explanation and diagram in section 2.2.1).

This result is interesting since it is an example of a combinatorial puzzle where a
higher puzzle hardness for humans does not translate to a puzzle more difficult
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Figure 5.9 – Probability that the dynamical system for SAT will not solve a
problem from a given class by continuous time t for various difficulties as taken
from http://puzzle-bridges.com. Interestingly, an “Easy” 10 × 10 problem
has a larger escape rate than a “Normal” 7 × 7, but a smaller one than than
“Hard” 7× 7

for a computer to solve. In [ERT12], the authors show how Sudoku games
deemed more difficult for humans are actually more difficult for the computer
to solve (indicated by a lower escape rate), while this is not the case for Bridges.
In Bridges, a “Hard” game has more constraints than a “Normal” game, making
it more difficult for a human to keep track of all the constraints and whether a
next possible move will violate any constraints. For SAT algorithms, the extra
number of constraints increases the α ratio, which guides the SAT solver more
quickly towards a solution. See Figure 5.10 for probability distributions of α
for different difficulty games on a 7 × 7 board. “Normal” difficulty produces
problems with an expected value for α just around the hardest region of ≈ 4.3.
“Hard” problems, due to the increased number of constraints, have a higher
expected value for α and hence are easier to solve using a SAT solver.
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Figure 5.10 – Probability density functions for α ratio for “Easy”, “Normal”,
and “Hard” problems on a 7 × 7 board. Easy problems tend to have a lower α.
The expected value for “Normal” difficulty is just around 4.3, the hardest region
for SAT, while for “Hard” problems, the extra additional constraints shift the
expected α value to the right, making the problem easier again.

Solving SAT with dynamical systems

In this chapter, we have shown how to encode N-Rooks and N-Queens in CNF
and found that solving the resulting problems using all the dynamical systems
is feasible.

We then analysed a much more interesting and challenging problem, the logic
game Bridges. We developed a CNF encoding for it, and solved the resulting
problems using the unbounded dynamical system for SAT. Finally, we analysed
system escape rates for different difficulty problems, and reached interesting
conclusions regarding difficulty for humans vs difficulty in terms of SAT.
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Chapter 6

Conclusion and Future Work

6.1 Achievements

The purpose of the project was an exploration of combinatorial optimization
using dynamical systems, with a focus on boolean k-SAT. We showed how to
express popular combinatorial optimization problems such as N-Queens and
the Travelling Salesman Problem as dynamical systems with fixed points corre-
sponding to solutions to the original problem.

For boolean k-SAT, we have shown and further evaluated two previously stud-
ied systems, and contributed a third system that has all its variables bounded,
and is able to solve some problems that the previously studied bounded version
could not. The motivation for keeping the variables bounded is that in a neural
computation setting, such as the brain, or an analog circuit, every computa-
tion will be bounded so it would be infeasible to run a potentially unbounded
computations such as the one in [ERT11].

To evaluate the idea of solving SAT using continuous-time dynamical systems,
the report contributes:

• Three progressively better CNF encodings for the game Bridges together
with their analysis for games of various difficulties

• An evaluation of the escape rates of the SAT dynamical system when
solving various difficulty Bridges games with the contributed encoding.

We find that the bounded dynamical systems as shown in [MTER12], while
suitable for solving random k-SAT instances, was not able to solve almost any
CNF encoding for Bridges.

Using the unbounded dynamical system, we compute escape rates given games
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of different difficulty, and find that, as expected, “Easy” games are indeed the
easiest for the dynamical system to solve, but “Hard” games get a higher escape
rate than “Normal” games due to the increased number of constraints but a
similar number of variables. This increases the clause-to-variable ratio and
makes the resulting formula easier to solve for a computer, letting us conclude
that increasing puzzle hardness for a human does not necessarily correspond to
an increased puzzle hardness for a computer.

6.2 Future Work

The following are possibilities for future work in this topic:

• The game Bridges is very similar to the problem of FPGA routing which
involves finding a way to connect different points on a circuit using only
certain allowed connection places and in a way that no connections cross
each other. An extension of this project could be to develop an encoding
for FPGA routing and see whether solving it with the dynamical system
exhibits interesting properties such as a measure of difficulty using escape
rates.

• Studying the effect of noise on the SAT dynamical system. It is possible
that transforming the deterministic dynamical systems as presented in
this paper to stochastic dynamical systems might help it get out of local
minima without sacrificing performance.

• While a neural system such as the brain is not able to run algorithms
the way a computer can, it does have the ability to run computations
using different unit types such as integrators, or threshold neurons. An
optimization problem expressed as a dynamical system should be possible
to express and simulate in a network of spiking neurons. A proposed future
work is then to investigate the possibility of creating a network of spiking
neurons capable of solving SAT using a dynamical system approach as
presented in this report. Furthermore, a network of spiking neurons will
usually be subject to constant noisy firing, which will also give insight to
effect of noise for the system.

6.3 Final Remarks

The project was an exploration of solving combinatorial optimization problems
using dynamical systems, with a focus on solving boolean k-SAT and a novel
application to the logic game Bridges. As a final comment, we note that in
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their current form, none of these systems are actually any good for solving their
corresponding combinatorial problems - they are orders of magnitude slower
than their deterministic algorithmic counterparts, and many times we are not
even guaranteed to find a solution. Nevertheless, the motivation is that casting
these discrete problems as dynamical systems over the reals makes it possible
to solve them in a neural medium such as the brain, and gives new insights to
neural computation.
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