Solution to TopCoder ZigZag.
Let \(A\) an array of length of \(n\) of integers. Let \(Z(i,0)\) be the longest zig-zag subsequence ending at index \(i\) with a positive difference (the second last element of it is strictly less than the last element), and let \(Z(i,1)\) be the longest zig-zag subsequence ending at index \(i\) with a negative difference. Then:
\[ \begin{align*} Z(i,0) &= \min_{j < i, \\ A[j] < A[i] } (Z(j,1) + 1) \\ Z(i,1) &= \min_{j < i, A[j] > A[i] } (Z(j,0) + 1) \\ Z(0,0) &= 1 \\ Z(0,1) &= 1 \end{align*} \]
Java solution:
public static int longestZigZag(int[] A){
int n = A.length;
int[][] Z = new int[n][2];
for(int i = 0; i < Z.length; i++){
Z[i] = new int[2];
}
Z[0][0] = 1;
Z[0][1] = 1;
int best = 1;
for(int i = 1; i < n; i++){
for(int j = i-1; j>= 0; j--){
if(A[j] < A[i]) Z[i][0] = Math.max(Z[j][1]+1,Z[i][0]);
if(A[j] > A[i]) Z[i][1] = Math.max(Z[j][0]+1, Z[i][1]);
}
best = Math.max(best, Math.max(Z[i][0],Z[i][1]));
}
return best;
}